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INTRODUCTION

The earthquake location program HYPOELLIPSE (Lahr, 1980) evolved out of 
the program HYP071 (Lee and Lahr, 1972). One of the principal changes 
involved modification of the regression technique and calculation of the 
spatial error ellipsoid. The HYPOELLIPSE program description (Lahr, 1980) set 
out in Chapter III the development of the linearized least-square equations 
that must be solved. This report gives additional details of the development 
and solution of the equations, including sections on damping and error 
estimation. The final chapter describes the various forms of weighting 
available in HYPOELLIPSE.



A. DETERMINATION OF HYPOCENTER AND ORIGIN TIME

A trial-hypocenter is chosen in the vicinity of the expected final 

hypocenter. Corrections in latitude, longitude, depth, and origin time are 

then calculated in such a way that the sum of the squares of the travel-time 

residuals (observed travel-time minus the calculated travel-time at each 

station) is decreased. This iterative procedure is continued until the 

corrections become smaller than the value preset by the user. Termination 

also occurs if convergence is not reached after a predetermined number of 

iterations.

1.) Development of the Residual Equation for P-Wave Arrivals 

Definitions:

Program Notation 

X = trial longitude. LONEP

Y = trial latitude. LATEP 
o

Z = trial depth. Z o

T = trial origin time. ORG

TP. = observed first P-wave arrival time at station i TP(I)

T = computed first P-wave travel time at station i T(I)

T. is a function of (X , Y , Z ). i oo o

D = sum of station P-wave time delays at station i due to:

a) Elevation. ELVDLY(I)

b) Other sources. DLY(KNO,I)

(KNO may be from 1 to 5 to allow up to five different 

sets of corrections to be used.) 

SDLY = S-wave delay SDLY(KNO,I)

X, = travel time residual (observed arrival time X(4,I) ^»i

minus computed P-wave arrival time) at 

station i.



X4,i - TPi - (To + Ti + V-

We wish to change the trial hypocenter and origin time by

(dX , dY , dZ , dT ) and in so doing reduce the residual X, . at each o o o o 4,i

station as much as possible.

Let R. be the i station residual after this change has been made.

R, = X. J +    dX +   dY +   =* dZ +   =^. dT
1 4 - 1 ax ° a Y ° a z ° a T

higher order terms.

Assuming dX , dY , dZ and dT are small, the higher order terms can be 
o o o o

neglected. Since TPJ , T and DJ are not functions of X , Y , or Z , thisi o i o o o

equation may be rewritten

3T 8T 3T 8X,
R. = X. , -  - dX -  - dY -  - dZ -  ^i dT 
1 ^ 9X ° 3Y ° 9 Z ° 9T
0000 (A-2)

For convenience in writing, the following notation is used:

Program Notation 
9T
   - X

ax
o

9T
 -
9Y > 

o

9T
 - = X X(3,I)az J>1

o

ax ai
  **=- = K.. For P arrivals K. =  °- = 1. KSMP(I)
ai aio o



dX = Y . DY1 in minutes, 
0 i or Y(l) in

kilometers

dY - Y . DY2 in minutes, 
02 or Y(2) in

kilometers

dZ - Y 0 . Y(3) in kilometers 
o j

dT = Y,. Y(4) in seconds 
o 4

Then the i equation becomes

R - - X/ 4 ~ Xi < Y i ~ X9 4 Y9 ~ XT < Y-> ~ K-V <A~3 > 
i 4,i 1,1 1 2,i 2 3,i 3 i 4

2.) S-Wave Arrival Equation

For each S-wave arrival a similar equation may be written. If a station 

has P-wave and S-wave data it is assigned two values of i. The notation 

definitions for P given above are modified as follows: 

Definitions

Program Notation 

TS. = Observed S-wave arrival time. TP(I)

X, = Observed minus computed S-wave arrival X(4,I) ^ >i

time at station i. 

S-wave arrival times may be computed in two ways:

1) With constant P-wave velocity to S-wave velocity ratio (VPVS) throughout

the structure: S-wave arrival time - T + VPVS *(T. + D_, ) + SDLY. .
o i i i

Partial derivatives (X. ) are set equal to the values used for P arrivals
3 >i

multiplied by VPVS.

2) Variable VPVS within the structure: the S-wave travel time, S , is 

computed for the S velocity structure. S-wave arrival time =

T + S_, + SDLY_, + ELVDLY. Partial derivatives (X. ) are computed from 
o i i i j ,1



the S velocity structure.

3X 3T
 ^ - K . For S arrivals K =  - = 1. KSMP(I)
3T 3T

o o

The residual equation is

Ri = X4,i ~ Xl,iYl ~ X2,iY2 ~ X3,i Y3 ~ KiV

3.) S minus P Interval Equation

S minus P Times

If the absolute time is not available at a station where S-wave and P- 

arrivals can be read, the basic residual equation can be modified to use these 

data. Currently this option has been implemented in HYPOELLIPSE only for the 

case of constant VP/VS ratio throughout the structure. The above definitions 

are modified as follows: 

Definitions: Program Notation

X - Observed S-P interval, TP - TS , minus X(4,I) 
4,1. i 1.

computed S-P interval. The computed 

S-P interval, T , is
o c

T = VPVS*(T + D ) + SDLY - (T + D. ) 
 5  P i i i i i

= (VPVS - 1.0)*(T + D ) + SDLY

Then X = (TP - TS ) - (VPVS - 1)*(T -I- D ) - SDLY . 
4,x i i i i i

The partial derivatives (X ) are set equal to the values used for P
J j 1

arrivals multiplied by (VPVS-1.0).



3X
 -^=- = K = 0 for S-P data since the S-P residual is not KSMP(I)
3T

a function of origin time.

Again the residual equation is: 

Ri = V - X1,1Y1 - X2,iY2 - X3,iY3 - KiV (A"4)

4. Normal Equations

To summarize, we have formed for each observed P-wave arrival, S-wave 

arrival or S-P interval observed, one equation for the predicted residual 

(R ) in terms of the four unknowns (Y. , Y«, Y , Y,).

-   X, ,   X. Y.   X0 . Y o   Xo . Y_  " K. Y.  
i 4,i l,i 1 2,i 2 3,i 3 i 4

With four such equations a solution with R = 0, i = 1,4 can always be found 

and will be unique as long as the determinant of the coefficients is not 

zero. Normally there will be data to form more than four equations yielding 

an overdetermined system of equations. We wish to find the changes in 

hypocenter and origin time (Y , Y , Y , Y ) that will result in the smallest 

values of R. possible. This program seeks to minimize the sum of squares Q, 

where

n
Q - E

Since the data will vary in quality and we will wish to weight the residuals

as a function of distance, azimuth, deviation from the mean, etc., we will

2 
define a weight W (WT(I) in the program) and multiply each R term by this

weight. The weight should be inversely proportional to the square of the



uncertainty in the corresponding residual X, ..

n 2 
Q = Z W R . (A-5)

In effect, each equation of the form (A-4) is multiplied through by the 

square root of its weight. 

The weighted equations A-4 may be written in matrix form

R = r - A ' Y

(A-6) 

where R is the vector V~W? R. (i = 1, n),

r is the vector V"w? X, (i = 1, n),
i Q , i

A is the

/w\
v n 1 ,n n 2,n v n 3,n v n n

and Y is the vector Y (i=l,4). 

The normal equations are 

A 1 r - A'A Y,

and are solved for the vector Y which will minimize Q. (Draper and Smith, 

1966, pg 47).

The equation A 1 A Y = A'r is expanded in matrix form as



I W± Xltl 2

T W X X1 WiX2,iXl,i

T W X X1 Wi X3,i Xl,i

IWiXl,iX2,i

V3 2,i

± '

V3 i

7 W X X
L i 3,iA4,i

I? Wi Ki X4,i J
(A-7)

This set of equations is simplified by multiplying the fourth equation by 

(ZW X K )/(ZW K ) and subtracting it from the nth equation for n - 1, 2
JL 11 y 1 1 11

2 
and 3. (Note that since K. = 0 or 1, K = K± )

One can show that

Li W . A i \y X IV y .

W (X - K
1 J » X -1

- K
IwiKi

(A-8)

Equations (A-7) can be rewritten.

10



^   Ns, , s, 0 s, _
1,1 1,2 1,3

S 2,l S 2,2 S 2,3

c c cUb3,l b3,2 b3,3 J

Y

Y2

-V

=

~81/
S 2,4

-S3,4-

(A-9)

Y   Y   Y Y   Y V _YVY4 " \ Vl X2 Y2 X3 Y3

NR 

Z

(A-10)

where X.
WiXj,i Ki

NR 
Z

, the weighted means of the P-phase and

NR 

S-phase data, and S = Z W (X. - K X.) (X^ - K X, ) , the sum of the
~] «K , 1 "1)1 il K, 1 1 K 
J j=l J J

squares matrix.

In standard methods of solution of the Equations (A-9) problems arise if 

the determinant of the coefficients is near zero. This occurs when in one 

direction, or on one plane, or perhaps in every direction, the rate of change 

of. RMS with position is very small or zero. In step-wise multiple regression 

the choice of the most strongly controlled directions is limited to latitude, 

longitude, and depth.

In this program the IBM Scientific Subroutine EIGEN* is used to calculate 

the eigen values and eigen vectors of the S. , (j=l,3, K=l,3) matrix. The 

eigen vectors form the transformation matrix which is then used to transform 

the column matrix (S , S ,, S ,) into the new coordinate system.
1,H ^»^ J»^

*The subroutine EIGEN requires that the symmetric matrix S be 

transformed to a vector (ASML ) in storage mode 1. Thus a ASM1 =

(S 1,T S l,2' S l,3' S 2,2' S 2,3' S 3,3 } '

11



In the new coordinate system the Equations (A-l) become:

"A o o
° ' A2,2 °

LO 0 A J

"BT ~*
i

BT £

- BT 3 -

ss

R l
R2

-V (A-ll)

Those principal directions in space with very little control will have 

correspondingly small eigen values. Each eigen value is the weighted sum of 

squares of partial derivatives of traveltime with respect to changes in the 

corresponding principal direction.

The BT corrections are transformed into changes in latitude, longitude, 

and depth, (Y , 1=1,3). Then the origin time correction Y. is calculated from 

Equation (A-2).

After (Y , Y , Y , Y ) are found it is possible to predict the weighted 

sum of squares of the residuals after these changes are made, assuming the 

higher order terms of Equation (A-l) can be neglected. This will be most 

nearly true for small changes in locations such as the final steps of the 

iteration.

Equation (A-4) in its weighted form gives the i residual after the 

step is made as a function of the step, the i derivatives, and the 

observed i residual.

The vector YwlR is orthogonal to the vectors/W?X ., j=l,2 or 3 . ii v i j , i 11

Thus an infinitesimal shift of Y , Y , Y , or Y. results in no change in 

magnitude of the^/WlR vector which is the condition imposed by the least 

square Equations (A-6).

Let X, be the predicted change in the i residual

 " / j ~ ~"-t j ^i "" Xo . Y_   Xo , Y0 ~ K. Y. 
4,i 1,1 1 2,i 2 3,i 3 i 4

12



Using Equation (A-10) for YA, X, becomes:^»i
A
X4,i = " Xl,i Yl " X2,i Y2 " X3,iY3 " Ki (X4 " X1 Y1 " X2 Y2 " 

Combining terms, this becomes:

X4,l - - Y 1 (X 1,1 - W - VX2,i - W - VX3,i - Ki X3 ) - Ki X4

______

Using this term to simplify Equation (A-12),./W?R v/^7^XA + XA
11* 1 ^fjl ^t y 1

The predicted weighted sum of squares of residuals after the move becomes

PSS = I
i-1

PSS - w.i + x4>ix4>i + x4)1 (x4>i + x4>t )]

PSS = ZWl [X >t + X4>1X4)± - (X YI + X2>1 Y2 + X3)1Y3 + K±Y4 ) R±]

Due to the orthogonality mentioned above, the sums of products involving 

R are zero and the resulting equation is

PSS - iwiRt = Wlx tl + w±

Substituting for X

PSS - Wlx - Y lWlX (X

f** /S*

" Y3IWiX4,i (X3,i " KiX3 } " X4 ZWiKiX4,i*

13



Using the identity of Equation (A-8) and the definition of

PSS

Y2W1 (X4,1 - W(X2,i - KiV - WX4,i

By the definition of Si»J

PSS - S4>4 - Y lS

YSE, defined by

YSE = yPSS/PHI ' (A-13)

where PHI is the number of degrees of freedom, is an estimate of the standard 

error of the readings. PHI is equal to the number of equations, NR, minus the 

number of parameters estimated. For example, if 8 equations were used to 

calculate A lat, A Ion, A Z, and A origin time, then PHI would equal 8-4 = 4.

5.) Damped Solution

In order to assure convergence in cases of poor hypocentral control the 

inversion is "damped". To do this three additional equations are added to

those previously described [see Equations (A-4)]. The additional equations

DY, - 0 
are: 1

DY2 = 0

DY^ - 0 
3

where D is a constant and the hypocentral step is Y , Y , Y . The initial 

value of D is 0.001. If after a calculated step the RMS value increases, the 

step is recalculated using increased damping (D = D*10.). This is repeated 

until the RMS does decrease after the step. The damping remains at the

14



elevated level for two more iterations and then drops to 0.001 again.

B. ERROR ESTIMATES

1.) Joint Spatial Confidence Ellipsoid

There are many factors which may prevent the determination of true 

hypocentral locations. Among these are an incorrect earth velocity model, 

systematic reading errors, timing of the wrong phase, and random reading 

errors. Under the assumption that the model is correct, one may use 

statistical methods to estimate the effects of random reading errors which are 

assumed normally distributed with zero mean and a standard error. Care must 

be exercised, however, not to overlook the tentative nature of these 

estimates, in that the effects not included may have a great effect upon the 

locations. The error limits are also only approximate because they are based 

upon the linearization of a nonlinear system.

Proceeding under these assumptions, if we take the sum of squares matrix 

from regression to be S as in Equation (A-l) then the distribution of errors 

in the calculated step b , as given by Draper and Smith (1966), is

b ~ N (3,

The estimated step is a normally distributed random variable with mean
2-1 

0 , the true step, and variance-covariance matrix a [S] where a is the

standard error of the readings. The standard error in the direction given by
* /* _T *  

the unit vector p is SE = a v p'[S] p .

The joint confidence region equation is computed because it gives further 

insight into the probable boundaries of the correct solution (Draper and 

Smith, 1966). If we take 3 to be the true step, then the sum of squares of 

reading deviations which would yield the step b is given by 

(3-b)" [S] (3-b) and has three degrees of freedom.

15



/Q_U\^ fsl ( ft  h^ 
If the reading standard deviation is a then the ratio            

2 
a

is a chi-square distribution with 3 degrees of freedom.

(g-b)' IS] (g-b) m X2 (3 ^ 1 _a) ig the ellipgoid containing the 100(1 - a)

2 
a

2 
percent confidence region. The 68 percent value of X for 3 degrees of

freedom is 3.5. Therefore the 68 percent joint confidence error ellipsoid is 

given by (0-bV [S] (5-b) £3.5 o2

In the principal axis coordinate system of Equation (A-ll) the error 

ellipsoid is

(0-bV [A] (I-b) = 3.5 a2

(B-l) 

Expanding,

A11V 1 + A22V2 + A33V3   3 ' 5 °2 

where

V = (I-b) 

Then

V± -asA (B-2) 

are the principal semiaxes of the error ellipsoid.

From Equation (B-2) it is seen that the ellipsoid is only a function of 

the station geometry, the crustal model, and the reading standard deviation 

a. If TEST(29) >_ 0, then YSE of Equation (A-13) is used as an estimate of o 

in Equation (B-l) as long as PHI > 0. If PHI = 0, then o is taken to be

TEST(29). When YSE is used as an estimate of o, the F distribution should be

o 
used rather than the X distribution, which yields a larger error ellipsoid.

However this is not done in HYPOELLIPSE.

Using YSE for o has a number of drawbacks. Inevitably there will be

16



differences between the structure of the real earth and the flat layer 

velocity model used to represent it. These differences will generally bias 

the location and may be such that the data are not compatible with any 

location within the model, resulting in high residuals and a high estimate of 

a. Thus in many cases the residuals contain information about the 

incompatability of the model with the data as well as the reading errors. In 

order to evaluate these two effects separately, the confidence ellipsoid may 

be based upon an estimate of the reading standard deviation which is held 

fixed for all the events. If TEST(29) < 0 then ABS[TEST(29)] is always used 

for a in Equation (A-6). The confidence ellipsoid is then a measure of 

quality of the station distribution. Evernden (1969) strongly recommends this 

procedure for estimating confidence bounds. In estimating solution quality 

with the latter option, one must consider both the confidence ellipsoid, to 

determine the potential accuracy of the hypocenter, and the root mean square 

residual (RMS), which reflects both reading errors and model 

incompatability. Evaluation of the RMS residual may depend upon the 

earthquake location. In areas where the model is known to be incompatible, 

large RMS values will be normal whereas the same values in an area of known 

compatability would indicate probable errors in the arrival time data. 

2.) Derivation of confidence limits from the standard error ellipsoid

The relationship of the error ellipsoid to one and two dimensional error 

estimates is shown in Figure B-4. Note that if the shadow of the error 

ellipsoid is cast onto a plainer surface, the resulting elliptical region is 

larger than the 68% two parameter joint confidence region. Likewise, if the 

shadow of the elliptical region is cast onto a single axis, the resulting 

single axis limits are larger than the single variable standard deviation. 

The relationship between a joint two dimensional probability distribution

17
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CONTOURS OF EQUAL PROBABILITY

Y
68% CONFIDENCE 

REGION

AREA = 0.68

Figure B-5



(P ) and a one dimensional distribution (P ) is illustrated in Figure B-5. 
xy x

For each value of x, P is equal to the integral over y of the joint
A

probability function P . The ratio between s, the standard deviation of x,
xy

and m, the maximum deviation of the 68% joint confidence ellipse in the x 

direction, is equal to the square root of the ratio of the 68% value of chi- 

square with one degree of freedom to the 68% value of chi-square with two 

degrees of freedom. Similarly, the scaling relationship between the shadow of 

the joint hypocentral ellipsoid and the joint epicentral region is based on 

chi-square values for two and three degrees of freedom* Figure B-6 shows chi- 

square for P = 1, 2 and 3 for probabilities of 0.1 to .95. The program 

listing for ELLIPSE in the Appendix shows how to compute and plot a two- 

dimensional one standard deviation region if given the three-dimensional error 

ellipsoid. ELLIPSE is modified from the program GPP3 (Lahr, 1975). 

3. ) Computation of the standard error of origin time

The equation for origin time correction, (A-10) is

Y4 = X4 " X1 Y1 " X2Y2 " X3Y3

The variance of Y. is4
r** r>* 0 ") 0

VAR(Y4 ) = VAR(X4 ) + Xx VARCY^ + X2 VAR(Y2 ) + X3 VAR(Y3 )

+ covariance terms.

If this equation is developed in the principal axis coordinate system, then 

the covariance terms are zero. The standard error of origin time is then

 ,TO = (Reading Standard Error)*SQRT(VAR(Y. )) 
UKJ.V? *f

where Reading Standard Error is defined by YSE, Equation (A-13), or TEST(29), 

depending on the value of TEST(29) and the number of degrees of freedom.

18
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C. WEIGHTING 

1. Introduction

Geiger's least-squares method of earthquake location reduces the data to 

a set of linear equations, with one equation representing each reading of P- 

phase time, S-phase time, or S-P interval time. The four unknowns are the 

changes in latitude, longitude, depth and origin time. Clearly a set of at 

least four equations with the rank of the coefficient matrix greater than or 

equal to four is required to solve for the unknowns. When there are more than 

four equations a solution satisfying all equations is not always possible and 

the method of least squares minimizes the sum of the squares of the residuals 

from each equation.

Consider, for example, an earthquake with five recorded P-phase times. 

There are five possible combinations of four of the readings and, in general, 

each combination would have a different solution. The least-square solution 

would be somewhere among these five solutions and would best represent all of 

the readings as a whole. However, if one reading was known to have twice the 

standard error of the others, then of the five solutions the one based upon 

the other four readings would have the greatest chance of being correct. This 

information is properly included in the least-square method by including the 

same equation more than or less than once depending upon the estimated reading 

errors. In the example just given the equation with twice the standard error 

of the others should be multiplied by a weight of one half, while the others 

are multiplied by weights of one.

From Equation (A-2)

f 3X4 i 3X4 i 3X4 i 3X4 i
a), X, J +  ^- dX + '* dY +  ^- dZ + q>1 dT
M 4 ' 1 3X ° 3Y ° 3Z ° 3T

L o o o

19



where u) is the equation weight.

Then when the residuals are squared and summed:

n r 2 PQ = Z a) R

This equation is usually written

n 2 2 Q = Z W R where W - u>

To summarize, the equation weights, u) , should be set inversely 

proportional to the standard error of the corresponding arrival time 

reading. Note that if there are just four equations, weighting will not 

affect the solution. Similarly, if there are more than four equations but one 

equation is critical in that without it the rank of the coefficient matrix is 

three, then the weight given that equation will not affect the solution.

2.) Assigned weight codes

In the program each reading can be assigned a weight code of 0, 1, 2, 3,

2 3 x 1 x 1 x 
or 4. These correspond to W = o> = 1, (7) , («) , (7) and 0,

respectively, and X is set equal to Test(36). The code should be assigned so 

that 0) is inversely proportional to the estimated standard error of the 

reading.

For S and S-P readings the weights are also multiplied by TEST(39). This 

allows the relative importance of the P and S readings to be varied with ease.

3.) Weight out large residuals

The program has the option of giving zero weight to equations with 

residuals greater than a specified number of seconds (TEST(15)) from the 

mean. This is particularly designed for reading errors larger than 5 or 10

20



seconds. The residuals are removed one at a time with recalculation of the 

mean.

4.) Boxcar Weighting

Residuals greater than a specified number (TEST(17)) of standard 

deviations from the mean may be given zero weight. This is done in one 

step. It may also be done by quadrants with the quadrants defined as for 

Jeffreys* weighting.

5.) Distance Weighting

The user specifies two distances, Dl = TEST(ll) and D2 = TEST(12) which 

define the ramp function for distance weighting, as shown in Figure 1 below.

(0.

Station 
weight

Dl D2

Distance

Figure C-l 

6. Azimuthal Weighting

The subroutine AZWTOS modifies the weight for each station to be a 

function of azimuth. The region around the epicenter is divided into four 

quadrants and the stations in each quadrant are weighted so that the sum of 

the azimuthal weights for each of the four quadrants are equal.

The azimuths are sorted in order of increasing azimuth and the maximum 

gap in azimuth (i.e., the maximum difference between two consecutive azimuths 

in the sorted list) is determined. The region around the epicenter is then 

divided into four quadrants such that one of the dividing lines bisects the 

maximum gap. The other dividing line is then perpendicular to that direction,
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The weight is calculated from

= ~ NRWT 
NOQ*NRQ,

where NRWT is the total number of P, S and S-P readings with weight

greater than zero.

NOQ is the total number of quadrants occupied by weighted 

stations.

NRQ. is the number of stations in the quadrant containing the

4 th
i station.

7.) Jeffreys' weighting

Jeffreys' weighting is also based on the residuals. As explained in the 

next section it takes account of the wide tails on the otherwise normal 

distribution of errors of arrival time readings. Care must be taken in its 

use when the earthquake is displaced from its correct location. In that situ 

ation the residuals will have an azimuthal dependence as shown in Figure 2.

MOST NEGATIVE 
RESIDUALS TRUE LOCATION 

©
TRIAL LOCATION 

SHIFT
MOST POSITIVE 

RESIDUALS

Figure C-2

For this reason there is a program option to apply Jeffreys f weighting within 

each of four quadrants separately. The arrow in Figure 2 indicates the move 

from the previous trial hypocenter. This direction is used to specify four
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quandrants into which the stations are divided, since it will often be 

oriented as indicated in Figure (2). Then the mean is calculated for each 

quadrant and Jeffreys' weighting is applied to each separately. A minimum of 

five readings is required in a quadrant for Jeffreys' weighting to be applied 

quadrant by quadrant. 

8.) Details of the Jeffreys' weighting calculation

Jeffreys (1961) describes a method of weighting travel-time residuals 

that accounts not only for the small errors in reading the correct phase, but 

also for the large errors introduced when occasionally the wrong phase is 

read. He assumes that most observers will agree on where a particular phase 

begins and that the reading errors for these observers will be normally 

distributed about the true arrival time. In addition, however, he assumes 

that there is a very small number of large errors caused by reading the wrong 

phases.

The normal distribution fri(X) of the residuals of correctly picked phases 

is

J (C-l) 

where a is the standard deviation of the residuals,

EWi (Xi - M) 2

EWi
(C-2)

and M = the weighted mean of the residuals,

EWX
M - _ 

(C-3)

The frequency distribution (f ) of the travel-time residuals of the
m
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misidentified phases is assumed to be

(C-4)

where a is a constant and g is an unknown function of X. M and a are the same 

as in equation C-l.

The total assumed frequency distribution is then

f.f +f = vx a/ EXP--^  ^ + ag
n m j - f

^  
t V Ul \ 1 (X - M) I

(C-5) 

Figure 3 is a plot of f, f and f .

Assuming the frequency distribution of equation C-5, Jeffreys (1961, p. 

215) shows that the weighting function W is

W

Exp (C-6)

where

ag _ _______agy -
1 - a

ag
(1 - a) - ag

(C-7)

y is the density of data points with large residuals divided by the 

density of data points with small residuals minus the density at large 

residuals. Thus y can be estimated from the data.

Note that the weights are a function of a and M which are in turn 

functions of the weights, equations (C-2) and (C-3).
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Thus a method of successive approximations could be used to evaluate the 

weights. Jeffreys (1961, p. 216) states, however, that more often than not 

the second approximation almost repeats the first. In this program the first 

approximation is used.

Bolt (1960) found that for teleseismic data, setting y and a equal to 

0.02 andy10, respectively, rather than calculating them from each data set 

yielded generally satisfactory results. In this program the weights are 

calculated from the formula:

.         I + TEST(20)

TEST(20) EXP ' A ' XTEST(34) J 
L J

TEST(20) corresponds to u and the default value is 0.02. a corresponds to 

the standard deviation of the current earthquake. If a is less than TEST(34) 

then TEST(34) is used in place of a.

To save computation time a weighting function array, WF, is defined such 

that

WF(K) =      " v "v/         0 , , K - 1,51 
1 + TEST(20) EXP I[0.1 (K

WF corresponds to the weights for residuals from zero to five standard 

deviations from the mean in units of tenths of a standard deviation. Beyond 

five standard deviations the weight is set equal to zero. The index K is

calculated in the program as

ABS(X(4,i) - AVRPS * KSMP(i)) * 10.0K =                                       + 1.3

a

X(4,i) = travel time residual

AVRPS = average of the P and S residuals
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KSMP(i) = 1 normally

KSMP(i) » 0 if this is a residual for S-P data

D. ELEVATION DELAY

The effect on travel time of variations in elevation specified for 

each station may be included by setting TEST(2) in HYPOELLIPSE to a non- 

negative value. The elevation correction, as detailed below, is based on an 

approximation which works reasonably well for over a wide range of angle of 

incidence. 

1.) TEST(2) = 0.0

In this case the travel time is increased by an amount equal to the time 

for a wave to pass through a layer with thickness equal to the elevation and 

with a velocity equal to the velocity of the top crustal layer. The path 

length is computed from the angle of incidence of the ray at the surface. 

ELVDLY « ELEVATION*COS(a)/v(l)

"ojK V(l) ELEVATION
S * TN A fTTl*

/ V(l)

T?T T?T7 A fT /^XT

*^ V(2) 
EARTHQUAKE

This formulation is an approximation which works reasonably well over a wide

variation in a.

2.) TEST(2) GREATER THAN ZERO.

In this case, the velocity-above the datum elevation is set to TEST(2). 

Again, the angle of incidence at the surface is used in computing the 

elevation delay. 

ELVDLY = ELEVATION*COS(a)/TEST(2)
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y/
V = TEST(2)

V(l)

ELEVATION 
           ̂-DATUM ELEVATI03

V(2)

For the case of variable Vp/Vs ratio within the model, the elevation delay for 

S is computed from

ELVDLY(S) = ELEVATION*COS(a)*TEST(l)/TEST(2), where 

TEST(l) is the global value of Vp/Vs ratio.

27



APPENDIX

PROGRAM TO COMPUTE THE TWO-DIMENSIONAL PROJECTION OF AN ERROR ELLIPSOID

C      ELLIPSE.FOR 0. C. LAHR 4/6/84
c       BASED ON GPP3 COMPUTATIONS
c       THIS PROGRAM WILL PLOT ONE ERROR ELLIPSE
C
C

DIMENSION IAZ(2),IDP<2>,SE<3) 
C

CALL PLOTS<0.,0.,0)
CALL PLOT(1.,1.,-3)

XZERO
YZERO
SINPK
IAZU)
IAZ(2)
IDP( 1 )
IDP(2)
SE( 1 )
SE(2)
SE(3)
ELFAC
PHI
PPAZ
MORSE
IDBUG
ROT

= 3.0
* 3.0
* 1 .

45
135
0
0

= 4.
* 2.
= 0.
= 1.
= 0.
= -45.

1
2

= 0.

ICMOUT - 6
RPD « 1.745329251994E-2 

C 
c      OPTIONAL READ STATEMENT

11 READ(9, 10J0,END = 999) XZERO, YZERO , S INPK ,
1 IAZ,I DP,SE,ELFAC,PHI,PPAZ,MORSE,IDBUG,ROT 

100 FORMAT(3(18X,F10.2/),4(18X,I5/),6(18X,F10.2/),18X,I5/,18X,15,
1 /18X.F10.2) 

C 
C-  -- CONVERT PHI AND PPAZ TO RADIANS

PHI   PHI*RPD
PPAZ = PPAZ*RPD 

C
CALL PLOTEL(XZERO,YZERO,SINPK, 

1 IAZ,I DP,SE,ELFAC,PHI,ROT,PPAZ,MORSE,IDBUG)
GO TO 11 

C
999 STOP

END
SUBROUTINE PLOTEL(XZERO,YZERO,SINPK,

1 IAZ,I DP,SE,ELFAC,PHI,ROT,PPAZ,MORSE,IDBUG) 
C
c __     PLOT ONE STANDARD DEVIATION ERROR ELLIPSE. --            
C 
C
C INPUT 
C
C XZERO X POSITION OF CENTER OF ELLIPSE 
C YZERO Y POSITION OF CENTER OF ELLIPSE 
C SINPK INCHES PER KM
C IAZ AZIMUTH OF FIRST TWO ELLIPSOID AXES 
C IDP DIP OF FIRST TWO ELLIPSOID AXES
C (THE THIRD AXIS IS COMPUTED BY CROSS MULTIPLICATION) 
C SE STANDARD ERROR OF ALL THREE ELLIPSOID AXES 
C ELFAC A SCALE FACTOR FOR ELLIPSES. SET EQUAL TO ONE 
C FOR THE JOINT 2-DIMENSIONAL 68% CONFIDENCE REGION
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C PHI ANGLE LOCAL MERIDIAN MAKES WITH Y PLOT AXIS
C ROT ROTATE THE ELLIPSE CLOCKWISE BY THIS AMOUNT
C PPAZ AZIMUTH OF THE CROSS SECTION PLAIN
C MORSE 0 FOR MAP PROJECTION
C 1 FOR CROSS SECTION PROJECTION
C IDBUG .GE. 2 FOR TRACE OF COMPUTATIONS
C OUTPUT
C

DIMENSION IAZ(2),IDP(2),SE(3) 
C

RPD = 1.745329251994E-2 
C

CALL ELLIPS(IAZ,I DP,SE,ELFAC,PHI,PPAZ,MORSE,IDBUG, 
1 AEL,BEL,CEL) 

C
c        THE ELLIPSE EQUATION IS: 
C 1 = AEL*X**2 + BEL*X*Y + CEL*Y**2 
C OR IN TERMS OF R AND THETA:
C 1 = AEL*R**2*COS(THETA)**2 + BEL*R**2*COS{THETA)*SIN(THETA) + 
C CEL*R**2*SIN(THETA)**2 
C 
C 
c        PLOT A GRID

AMAX = 1./SQRT(AEL)
IF(l.XSQRT(CEL) .GT. AMAX) AMAX = l./SQRT(CEL)
CALL PLOT(0.,0.,-998)
IMAX = AMAX +1.5
XI « -IMAX + XZERO
CALL PLOT(XI, YZERO, 3)
DO 100 I «= -IMAX, IMAX
XI - I + XZERO
CALL PLOTfXI, YZERO, 2)
CALL PLOTfXI, YZERO+.l, 2)
CALL PLOTfXI, YZERO, 2) 

100 CONTINUE
YI = -IMAX + YZERO
CALL PLOTfXZERO, YI, 3)
DO 200 I «= -IMAX, IMAX
YI * I + YZERO
CALL PLOTCXZERO, YI, 2)
CALL PLOT(XZERO+.l, YI, 2)
CALL PLOT(XZERO, YI, 2) 

200 CONTINUE
IF(AEL .EQ. CEL) GO TO 650
THETA = 0.5*ATAN(BEL/(AEL-CEL»
GO TO 675

650 THETA * 45.0*RPD 
675 DTHET «= 18.0*RPD

DO 700 I = 1,21
CS = COS(THETA)
SN = SIN(THETA)
RA = 1 .0/SQRT(AEL*CS**2 + BEL*CS*SN+CEL*SN**2)
X «= RA*COS(THETA-RPD*ROT)*SINPK + XZERO
Y «= RA*SIN(THETA-RPO*ROT)*SINPK + YZERO
IF(I .EQ. 1) CALL PLOT(X,Y,3)
CALL PLOT(X,Y,2) 

700 THETA « THETA + DTHET
CALL PLOT(X,Y,3)
CALL PLOT(0.,0.,-998)
RETURN
END
SUBROUTINE ELLI PS(IAZ,I DP,SE,ELFAC,PHI,PPAZ,MORSE,IDBUG, 

1 AEL,BEL,CEL) 
C       PROGRAM TO FIND SHADOW PROJECTION OF THE ERROR ELLIPSE ON

29



C A HORIZONTAL PLANE OR ON ANY VERTICAL PLANE.
C
C INPUT
C
C IAZ AZIMUTH OF FIRST TWO ELLIPSOID AXES (DEGREES)
C IDP DIP OF FIRST TWO ELLIPSOID AXES (DEGREES)
C SE STANDARD ERROR OF ALL THREE ELLIPSOID AXES (KILOMETERS)
C ELFAC A SCALE FACTOR FOR ELLIPSES. SET EQUAL TO ONE
C FOR THE JOINT 2-DIMENSIONAL 68% CONFIDENCE REGION
C PHI ANGLE THE LOCAL MERIDIAN MAKES WITH Y PLOT AXIS (RADIANS)
C PPAZ AZIMUTH OF THE CROSS SECTION PLAIN (RADIANS)
C MORSE 0 FOR MAP PROJECTION
C 1 FOR CROSS SECTION PROJECTION
C IDBUG .GE. 2 FOR TRACE OF COMPUTATIONS
C OUTPUT
C
C THE RESULTING ELLIPSE IS> AEL*X**2 + BEL*X*Y + CEL*Y**2 = 1
C
C
C

DIMENSION IAZ(2),IDP(2),SE(3)
DIMENSION PAUV(3,3),TPACS(3.3),TEACS(3,3) 

C
DATA RPD/.0174532927
NOFILE = 10

C

C
C

C 
r.

IFdDBUG .GE. 2) WR ITE ( NOF I LE , 900) 
900 FORMAT*/,' *** SUBROUTINE ELLIPSE *** 
50 DO 150 1-1,3 

DO 150 J ~ 1 ,3 
TPACS(I,J) = 0.0 
PAUV( I ,J) = 0.0 

150 TEACS(I.J) - 0.0

.      _ FIND ELLIPSE PRINCIPAL AXIS VECTORS IN TERMS OF 
PLANE COORDINATES. Z OF THE PROJECTION PLANE 
PROJECTION DIRECTION. 

IFfMORSE .EQ. 1) GO TO 230

._-____ rnp MAP PD n.icTT T nw ___________________________

)

TUT O D rt 1 Cf*T T f"lMTHE rRUOtLilUPl 
COORDS IS THE

DO 225 I = 1,2 
DP = IDP(I)*RPD 
AZ = IAZ(I)*RPD 
APP » AZ + PHI 
IF( IDBUG .LE. 1) GO TO 220 
WRITE(NOFILE,1000) IAZ(I),I DP(I) 

1000 FORMATC AZ - ',I3,7X,' DP - ' , 13, 7X) 
220 PAUV(I.l) = COS(DP)*SIN(APP) 

PAUVU.2) = COS(DP)*COS(APP) 
225 PAUV(I,3) * -SIN(DP)

GO TO 240 
C
c _      - FOR X-SECTION PROJECTION.              - 

230 DO 235 I * 1,2 
DP » IDP(I)*RPD 
AZ - IAZ(I)*RPD 
APP - AZ + PHI 
IF( IDBUG .LE. 1) GO TO 233 
WRITE(NOFILE,1000) IAZ(I),I DP(I) 

233 PAUV(I,1) » COS(DP)*COS(APP-PPAZ)
PAUV(I.Z) - -SIN(DP)

235 PAUVd.3) » COS(DP)*SIN(APP-PPAZ) 
C 
c       CROSS MULTIPLY TO FIND THIRD UNIT VECTOR.
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240 PAUVC3.1) = PAUV(1,2)*PAUV(2,3)-PAUV(2,2>*PAUV(1,3)
PAUV(3,2) = PAUV(2,1 )*PAUV(1,3)-PAUV<1,1)*PAUV(2,3)
PAUV(3,3) = PAUV<1,1 )*PAUV<2,2)-PAUV(2,1)*PAUV<1,2)

IF(IDBUG .LE. 1) GO TO 250 
WRITE(NOFILE,1015)

1015 FCRMAT</1X,'TRANSFORMATION TENSOR 
1 'PROJECTION PLANE COORDINATES'/)
DO 260 I - 1,3

260 WRITE(NOFILE,1020) <PAUV(I,J),J =1 
1020 FORMAT(3F12.2>

FROM PRINCIPAL AXIS TO

3>

c
c-

cc-

.       SET up TENSOR REPRESENTING ELi.ir.awii, , ,, riMnv*r«u -1 TDOnin TW nDTWrTDAI 1

250 DO 275 I = 1,3
275 TPACSU,!) = 1 .0/( .0000001 +(SE( I

.       TRANSFORM THIS TENSOR TO THE
DO 375 1=1,3
DO 375 J = 1,3
DO 350 K = 1 ,3
DO 350 L = 1,3
TEACSU,J) = TEACSU.J) + PAUV(K

350 CONTINUE
375 TEACS(J,I) = TEACSU.J)

IF( IDBUG .LE. 1 > GO TO 400

>*ELFAC)**2)

PROJECTION COORDINATE

,I)*PAUV(L,J)*TPACS(K

COORDINATES.

SYSTEM.

WRITEINOFILE,1050)
1050 FORMAT*/' ERROR ELLIPSOID IN PRINCIPAL COORDINATES', 

1 ' AND PROJECTION COORDINATES'/)
DO 380 1=1,3

380 WRITE(NOFILE,1075) (TPACS(I,J>,J=1,3),(TEACS{I,J),J=l,3) 
1075 FORMATOF10.2, 10X.3F10.2)

ELLIPSOID IS X.TEACS.X - 1 » F = 0
GRAD F IS A NORMAL VECTOR.
GRAD F .K = 0 DEFINES THE PLANE>
TEACS<1,3)*X + TEACS(2,3)*Y + TEACS(3,3)*Z = 0
SOLVE FOR Z AND SUBSTITUTE IN F EQUATION TO OBTAIN ELLIPSE.   
THE ELLIPSE IS> AEL*X**2 + BEL*X*Y + CEL*Y**2 = 1

SORT(CHI-SOUARE) FOR 3 DEGREES OF FREEDOM 
SQRT(CHI-SQUARE) FOR 2 DEGREES OF FREEDOM 
RATIO = 1.515/1.87 - .81
RATIO SCALES THE ELLIPSE FOR TWO DEGREES 
FOR THIS PROGRAM, LEAVE RATIO SET TO 1.0 
RATIO = 1.

AND 
AND

68X
68%

IS 
IS

87
,515

OF FREEDOM, MAINTAINING 68X

400 AEL = RATIO*(TEACS(1,1)-TEACS(1,3)*TEACS(1,3)/TEACS<3,3 ) ) 
BEL = RATIO*2.0*(TEACS<1,2)-TEACS(1,3)*TEACS(2,3)/TEACS{3,3)) 
CEL » RATIO*{TEACS(2,2)-TEACS(2,3)*TEACS<2,3)/TEACS<3,3)) 
IFdDBUG .LE. 1) RETURN 
WRITECNOFILE,1100) AEL,BEL,CEL

1100 FORMAT;/  AEL =',Ei0.4,' BEL =',Ei0.4,' CEL =',Ei0.4)
RETURN 
END
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PLOT OUTPUT FROM SAMPLE RUN

INPUT DATA

XZERO
YZERO
SINPK
IAZ(1)
IAZ(2>
IDP(l)
IDP(2>
SE(1)
SE(2)
SE(3)
ELFAC
PHI
PPAZ
MORSE
IDBUG
ROT

 
 
*
 
»
B

e

B

e

B

e

B

4.
4.
1 .

1.
2.
3.
1 .
0.

45
135
0
0

« -45.
B

B

SS 0.

1
2
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PRINTED OUTPUT FROM SAMPLE RUN

*** SUBROUTINE ELLIPSE *** 
AZ " 45 DP " 0 
AZ " 135 DP " Sf

TRANSFORMATION TENSOR FROM PRINCIPAL AXIS TO PROJECTION PLANE COORDINATES

0.00 0.00 1.00
-1.00 0.00 0.00
0.00 -1.00 0.00

ERROR ELLIPSOID IN PRINCIPAL COORDINATES AND PROJECTION COORDINATES

1.00 0.00 0.00 0.25 0.00 0.00
0.00 0.25 0.00 0.00 0.11 0.00
0.00 0.00 0.11 0.00 0.00 1.00

AEL -0.2500E+00 BEL -0.0000E+00 CEL -0.1111E+00
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